MAY JUNE 2017

- e) The position of a particle which moves along a straight line is given by [4] $x = t^3-6t^2-15t+40$ where x is in meters and t is in seconds. Find the time at which velocity will be zero. Also find the position of the particle in that time
- Q6 a) The acceleration of an oscillating particle is defined by the relation a = -kx. [4] Determine (i) the value of k such that v = 15 m/sec when x = 0 and v = 0 when x = 3 m and (ii) the speed of the particle when x = 2 m.

DEC 2016

(c) A particle travels on a circular path whose arc distance travelled is defined by $S = (0.5t^3 + 3t^2)$ m. If total acceleration is 10 m/s² at t = 2 sec, find radius of curvature.

DEC 2016

b. A particle starts from rest from origin and its acceleration is given by, $a = \frac{k}{(x+4)^2} \quad m/s^2.$ Knowing that V = 4 m/s when x = 8m, find (i) value of k and (ii) Position when V = 4.5m/s.

[4]

DEC 2015

c) A particle travels on a circular path, whose distance travelled is defined by $S = (0.5t^3 + 3t)$ m. If the total acceleration is 10 m/s^2 , at t = 2 sec, find its radius of curvature. [4]

MAY 2015

b) The y coordinate of a particle is given by $y = 6t^3 - 5t$. If $a_x = 14t$ m/sec² & $v_x = 4$ m/sec at t = 0, determine the velocity & acceleration of particle when t = 1 second.

DEC 2014

d. Acceleration of a particle moving along a straight line is represented by the relation $a = 30 - 4.5 \, x^2 \text{m/s}^2$. The starts with zero initial velocity at x = 0. Determine (a) the velocity when x=3 m (b) the position when the velocity is maximum.

c. A particle moves along a track which has a parabolic shape with a constant speed of [4] 10m/sec. The curve is given by $y = 5 + 0.3x^2$. Find the components of velocity and normal acceleration when x=2m.

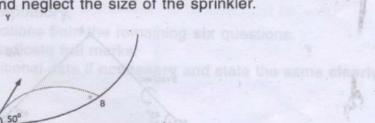
MAY 2014

c) A point moves along the path $y=x^2/3$ with a constant speed of Em/s. What are the x and y components of the velocities when x=3. What is the acceleration of the point when x=3.

MAY 2013

- (d) A curvilinear motion of a particle is defined by $v_x = 25$ —8t m/s and y = 48–3t² m. 4 At t = 0, x = 0. Find out position, velocity and acceleration at t = 4 sec.
- (c) For a particle in rectilinear motion a = -0.05 V² m/s², at v = 20 m/s, x= 0. Find x at v = 15 m/s and accⁿ at x = 50 m.

DEC 2012


- d) A particle moving in the +ve x direction has an acceleration, $a = 100 4v^2 \text{ m/s}^2$. Determine, the time interval and displacement of a particle when speed changes from 1 m/s to 3 m/s.
 - b) A point moves along a path $y=x^2/3$ with a constant speed of 8m/s. What are the x and y components of its velocity when x=3? What is the acceleration of the point at this instant? [06]
- c) The car moves in a straight line such that for a short time its velocity is defined by $v = (9t^2 + 2t) m/s$. Where t is in seconds. Determine its position and acceleration when t = 3sec. [04]

DEC 2010

5A). The acceleration of the particle is defined by the relation $a = 25 - 3x^2 \text{ mm/s}^2$. The particle starts with no initial velocity at the position x = 0. (a) Determine the velocity when x = 2mm (b) the position when velocity is again zero (c) position where the velocity is maximum and the corresponding maximum velocity. (08 marks)

MAY JUN 2010

(b) A particle moves in a plane with constant acceleration a = 4i m/s². At t = 0 the velocity of the particle was v₀ = i + 1.732 j m/s. Find velocity of the particle at t = 1 sec.

6. (a) A particle moves along a circle of radius 20 cm so that $s = 20 \pi t^2$ cm. Find its tangential and normal acceleration after it has completed a revoluation.